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I. HETEROGENEOUS MEAN-FIELD THEORY

To quantify the asymmetrical coevolution dynamics, we
develop a heterogeneous mean-field theory. The outbreak
threshold and the fraction of infected or informed nodes in
the final state are the two quantities that control the outcome.
For the information spreading, the densities of susceptible, in-
formed, and recovered nodes with degree k 4 at time ¢ are de-
noted by s;j‘A (1), pfA (1), rkAA (t), respectively. Analogously,
for the disease spreading, the densities of the susceptible, in-
fected, recovered and vaccinated nodes with degree k; at time
t are denoted by s _(t), pi. (t), 5. (t) and v (t), respective-
ly.

We first study the time evolution of information spreading
on a communication network, i.e., layer /4. During a short
period of time [t, ¢ + dt] there are two ways for a susceptible
node denoted by u 4 with degree k 4 to become informed, (i)
node u 4 can acquire the information from its neighbors with
a probability A 4k40 4(t)dt, where © 4(¢) is the probability
that a susceptible node connects to an informed neighbor on
uncorrelated layer .4, which is given by [1]

Ou(t) = 7 Sk = DPAWAL, (0. (1)
2

A

where (k 4) is the average degree of layer .4, or (ii) node u 4
can acquire the information when its counterpart node u;z on
layer B becomes infected. From a mean-field perspective,
node u 4 acquires the information from its counterpart node
with a probability Ag >, . Ps(ks)ksOs(t)dt, where ©p(t)
(to be defined later) is the probability that a susceptible node
on layer B will connect to an infected neighbor. Taking the
above two cases into consideration, the evolution equation of
the susceptible node with degree k 4 on layer A can be written
as

dsit (1) A
S = st (DA akaOA) + As(ks)Os(D]. @)

The increase in pkAA (t) is equal to the decrease in skAA (t), and
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thus the evolution equations for p;c“A (t) and rkAA (t) are

dpﬁA (t) A A
g = ShaOPaka®a(t) + As(ks)Os(1)] — pi, (1),
3)
and
drkAA (t) 4
dr = P, (1) 4
respectively.

We next investigate the evolution of the disease spreading
on layer B, the contact network. During a short time period
[t,t + dt], a susceptible node ug with degree k; in layer B
can either be infected or vaccinated. The probability of node
up being infected is Agkp©g(t)dt, where

@ > (ki — D Ps(kp)pp, (0, (9
K

where (k;) is the average degree of layer. Node up can
be vaccinated only when (1) its counterpart node u 4 is in
the informed state and (2) it is aware of the danger on
layer B, i.e., the number of infected neighbors n? does
not fall below static threshold ¢. Since a node in lay-
er A can be susceptible only when its counterpart is sus-
ceptible, node ug meets the first condition with probability
>k PA(k;A)sz kA0 4(t). The probability of the second
immunization condition for node ug is

O5(t) =

ks
Y(ks,t) = > Qks,nf, 1), ©6)

n?:qﬁ

where Q(kg,n%,t) is the probability that a susceptible node
on layer B with degree ks has n® infected neighbors, which
can be expressed as
k B B
s 1) = (5 ) a0 11 - Os0)'= . )
I

When node up simultaneously fulfills both conditions, it will
be vaccinated with probability p. Thus the probability that a
susceptible node on layer B with degree kp will be vaccinated
is

U(kp,t) = pY(ks, 1) Y Palka)si kara®a(t). (8)

ka



We can use these analyses to obtain the time evolution e-
quations for the susceptible, infected, recovered, and vacci-
nated nodes on layer B, i.e.,

dsB (t)
IZlBt = —Agkpsi,()Os(t) — U(ks,t), (9
dpi,(t)
hall) ks, (005() — A0, (10
driy (1)
TBt = pEB(t), (11)
and
dvEB (t)
— B — U(kg,t 12
dt ( B )7 ( )
respectively.

We can describe the asymmetrical coevolution dynamics of
information and disease spreading using Egs. (2)-(4) and (9)-
(12), which allow us to obtain the density of each distinct state
on layer A and B at time 1, i.e.,

Xn(t) =Y Pukn)xh, (1), (13)

kn,

where h € {A,B} and x € {S,I,R,V}. Whent — oo,
in the steady state, the final sizes of information and disease
systems are I? 4 and Rp, respectively.

II. LINEAR ANALYSIS FOR THE INFORMATION
THRESHOLD

Initially only a tiny fraction of nodes on layers .4 and 13 are

informed or infected, and most are susceptible. Thus we have

s;jA ~1, skBB ~ 1. Linearizing Egs. (3) and (10), we have

dpi, (1)
dt
dpi,(t)
dt

= Aaka©a(t) + As(ks)O (1) — i, (1),

= AgkpOs(t) — pf, (t). (14)

We rewrite Eq. (14) in matrix form as

dp

-7, 15

o p—p (15)
where

ﬁE (p}éA:17 e ’pkAA,nzam7pEB:1’ e 7p£8,ma1‘)T7
and
CA DB
C= ( 0 OB ) (16)

The elements in matrix C are

szé,k;‘ = [Aaka(kly — 1) Pa(k)]/(ka),
Chos.iy, = [Asks(kp — 1) Ps(kp)l/ (ks),

and
Dgg,kg = Ag(kp — 1) Ps(kp).

If pa(t) increases exponentially at the initial time, a finite
fraction of nodes on layer A will receive information. If
it does not, only a tiny fraction of nodes will receive infor-
mation. Thus the critical effective information transmission
probability is

M= (17)

where Alc is the maximal eigenvalue of matrix C, from which
we obtain

AL = max{Al, A5}, (18)

where A}A and A are the maximal eigenvalues of the adjacent
matrix of layers A and B, respectively.
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